Adduct formation between $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ and I_{2}

Matthew J. Almond ${ }^{\text {a, }}{ }^{\text {, }}$, Michael G.B. Drew ${ }^{\text {a }}$, David A. Rice ${ }^{2}$, Gavin Salisbury ${ }^{\text {a }}$, Michael J. Taylor ${ }^{\text {b, }}{ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
${ }^{\text {b }}$ Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 20 January 1996

Abstract

The compound $4\left(\left(\mathrm{Ph}_{3} \mathrm{Sb}\right)_{2} \mathrm{O}\right] \cdot \mathrm{I}_{2}(1)$ has been obtained by the addition of an I_{2} solution in acetonitrile containing ca. 5% water to a solution of triphenylantimony in the same solvent. 1 crystallises in the rhombohedral crystal system. The unit cell coniains 12 molecules of $\left(\mathrm{Ph}_{3} \mathrm{SbJ}\right)_{2} \mathrm{O}$ and four diiodine molecules. The I_{2} molecules link $\mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ molecules to form a one-dimensional chain, while the remaining molecules of $\mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ are not coordinated to I_{2}. The geometry of the $\mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ unit, in which the $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge is linear, is relatively little perturbed upon coordination, but the I_{2} unit shows a significant lenghening of the $\mathrm{I}-\mathrm{I}$ bond compared with free diiodine. This bond lengthening is reflected in the Raman spectrum of $\mathbf{1}$ which displays $\nu(1-1)$ at $174 \mathrm{~cm}^{-1}$, representing a decrease of $40 \mathrm{~cm}^{-1}$ from the position of the fundamental vibration of the free diatomic molecule.

Keywords: Antimony: Iodine; Molecular adducts; Stiboxane; Crystal structure

1. Introduction

Oxo-bridged antimony (V) compounds of the type $\mathrm{YPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{Y}$, where Y represents oxyanion, halide or pseudohalide ligands, are of long standing [1]. Of particular interest is the observation that some such compounds contain a linear, and others a bent $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ group [2]. In reviewing these structural types Glidewell [3] proposed a model which predicts that the linear $\mathbf{S b}-\mathbf{O}-\mathbf{S b}$ skeleton will be favoured in cases where the terminal \mathbf{Y} ligand is tightly bound with a short $\mathrm{Sb}-\mathrm{Y}$ distance. However, we have encountered a compound of this type, the iodide $\left(\mathrm{Ph}_{3} \mathrm{SbI}_{2} \mathrm{O}^{2}\right.$, which occurs in both forms [4]. Orange crystals of $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ are monoclinic and consist of molecules with $\mathrm{a}^{\text {' }} \mathrm{V}$ ' -shaped skeleton having an $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ angle of 144.6°; by contrast colourless, triclinic, crystals of the same constitution show the linear version of the molecule.

This unexpected finding suggests that special factors may need to be taken into account to explain the

[^0]structural variation of μ-oxo-bridged compounds. The conditions of preparation and crystallisation of the product are likely to be important. Packing effects and subtle electronic changes within the $\mathbf{S b}=\mathbf{O}-\mathbf{S b}$ bridge may be involved.

Extending the range of well-defined oxo-bridged antimony(V) systems, we now report a crystallographic and spectroscopic study of the compound $4\left[\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}\right]$ $\cdot I_{2}$ (1) which is an iodine adduct containing $\mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ molecules of the linear kind. The diiodine adduct crystallises alongside $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ during the reaction of $\mathrm{Ph}_{3} \mathrm{Sb}$ with I_{2} in the presence of moisture [4]. Under anhydrous conditions, these reagents yield $\mathrm{Ph}_{3} \mathrm{SbI}_{2}$ in several crystalline modifications [5,6].

Our work on 1 is also of interest in the context of an earlier claim by Boodts and Bueno of complex formation between dijodine and triphenylstibine oxide [7]. However, their reported spectrum cannot be assigned with any confidence because the formulation of the product as a charge transfer complex $\mathrm{Ph}_{3} \mathrm{Sb}=\mathrm{O} \cdot \mathrm{I}_{2}$ was based upon a view of the parent oxide as a monomer $\mathrm{Ph}_{3} \mathrm{Sb}=\mathrm{O}$, analogous to $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$, which has since been shown to be erroneous [8].

2. Experimental section

2.1. Preparation of crystals

To a solution of triphenylantimony in acetonitrile containing ca. 5% of water, a dark brown solution of iodine in the same solvent was added dropwise. The mixture was yellow at first, then became orange-brown when equimolar amounts of I_{2} and $\mathrm{Ph}_{3} \mathrm{Sb}$ were present. The reaction vessel was capped and left ovemight, after which the solution was decanted to expose a mixture of well-formed crystals. Some were colourless and others had a greenish-brown cast. An example of each kind was selected for crystallographic study. The colourless solid was shown to be the previously reported compound $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ (1a) in the triclinic form [4] (Fig. 1). The coloured crystals were a new material which proved to be the iodine adduct $4\left[\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}\right] \cdot \mathrm{I}_{2}(1)$.

In a similar reaction the solution phase was allowed to evaporate to dryness in air, leaving a dark brown residue. Rinsing with a small volume of acetonitrile exposed crystals, some orange and some of the green-ish-brown sort. IR spectroscopy showed the orange crystals to be $\left(\mathrm{Ph}_{3} \mathrm{Sbl}\right)_{2} \mathrm{O}$ in the monoclinic form (in which the $\mathrm{Sb}-\mathbf{O}-\mathrm{Sb}$ framework has a bent configuration). The greenish-brown crystals have a melting point of $194=196^{\circ} \mathrm{C}$. which is close to that of both the colourless and orange modifications of $\left(\mathrm{Ph}_{3} \mathrm{Sbl}\right)_{2} \mathrm{O}[4]$.

2.2. Crystallography

Crystal data are given in Table 1 together with refinement details. Diffraction data were collected with Mo $\mathbf{K} \boldsymbol{\alpha}$ radiation using the MAR Research Image Plate System. The crystal was positioned at 75 mm from the image plate. Ninety-five frames were measured at 2° intervals with a counting time of 2 min . Data analysis was carried out with the XDS program [9]. The structure

Fig. 1. The structure of the $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ molecule.

Table 1
Crystal data and structure refinement for $\mathbf{1 j}$

Formula	$4\left[\mathrm{Ph}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}\right], \mathrm{I}_{2}$
Empirical formula	$\mathrm{C}_{144} \mathrm{H}_{120} \mathrm{I}_{10} \mathrm{O}_{4} \mathrm{Sb}_{8}$
Formula weight	4157.40
Temperature (K)	293(2)
Wavelength (A)	0.71070
Crystal system	thombohedial
Space group	R-3
Unit cell dimensions (\AA)	
a	25.022(7)
b	25.022(7)
c	19.381(7)
Volume (${ }^{\text {j }}$)	10509(6)
Z	3
Density (calculated) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.971
Absorption coefficient (mm^{-1})	3.772
$F(000)$	5862
θ range for data collection (deg)	2.15 to 25.93
Index ranges	$\begin{aligned} & 0 \leqslant h \leqslant 30,-30 \leqslant k \leqslant 26, \\ & -23 \leqslant 1 \leqslant 23 \end{aligned}$
Reflections collected	10925
Independent reflections	$4377(R($ int $)=0.0346)$
Data/parameters	4377/253
Goodness-of-fit on F^{2}	1.092
Final R indices ($/>\mathbf{2 \sigma}$ (I)	$R 1=0.0509, w R 2=0.1130$
R indices (all data)	$R 1=0.0663, W R 2 m 0.1331$
Largest diff. peak and hole ($\mathrm{e} \AA^{-3}$)	1.221 and -2.783

was solved using direct methods with the shelx 86 program [10]. The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in geometric positions. An empirical absorption correction was applied using the difabs program [11]. The structure was then refined on F^{2} using shelxt [12]. All calculations were cartied out on a Silicon Graphics R400 workstation at University of Reading. Table 2 contains the atomic coordinates of 1 and in Table 3 are listed selected bond lengths and angles. Further details are available from the Director of the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 IEZ, UK.

2.3. Spectroscopy

IR spectra were recorded on samples in pressed CsI or polythene dises using a Perkin-Elmer model 1710 (Reading) or Paragon 1000PC and Bio-Rad FTS-60V (Auckland) spectrometers. The lower limit of the far-IR of the latter instrument, which operates with a vacuum bench, is $80 \mathrm{~cm}^{-1}$. Each spectrometer operated with a typical accuracy and resolution of $+/-2 \mathrm{~cm}^{-1}$. Raman spectra were obtained from single crystals of 1 at University of Auckland using a Jobin Yvon U1000 spectrometer fitted with a microscope attachment. Excitation employed the green, 514 nm , line of a Spex argon-ion laser operating at powers of $20-50 \mathrm{~mW}$.

3. Results and discussion

3.1. Crystal structure

The unit cell of 1 contains 12 molecules of $\left(\mathrm{Ph}_{3} \mathrm{SbI}_{2} \mathrm{O}\right.$ and four diiodine molecules. The iodine atoms in the discrete $\mathbf{I}_{\mathbf{2}}$ molecule occupy positions 6 c with three-fold symmetry. There are independent molecules of $\mathrm{PPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ type, which contain $\mathrm{Sb}(1)$ and $\mathrm{Sb}(2)$. The two molecules have similar geometries with a $\mathbf{S b}-\mathrm{O}-\mathbf{S b}$ moiety that is perforce linear. Each $\mathbf{S b}$ is five-coordinate, being bonded to three equatorial carbon atoms and to an iodine atom in an axial position trans to the bridging oxygen atom.

The $\mathbf{S b - C}$ equatorial distances are similar in the two molecules, being $2.098(7) \AA$ around $\mathrm{Sb}(1)$ and averaging $2.107(8) \AA$ around $\mathrm{Sb}(2)$. In both molecules the angles subtended by axial and equatorial atoms at the metal are within 3° of 90°. The $\mathrm{Sb}(1)-\mathrm{I}$ distance of $3.035(2) \AA$ is significantly longer than the distance $\mathrm{Sb}(2)-\mathrm{I}(2.964(1) \AA)$, whereas the $\mathrm{Sb}(1)-\mathrm{O}$ distance is a little less than $\mathrm{Sb}(2)-\mathrm{O}$ (1.9209(11) as against

Table 2
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\bar{\AA}^{2} \times 10^{3}$) for 1

	\cdots	y	2	$U_{\text {c9 }}$
Sb(1)	0	0	4009(1)	28(1)
(1)	0	0	2443(1)	56(1)
O(1)	0	0	5000	47(3)
C(11)	412(3)	-552(3)	3061(4)	34(2)
C(12)	$963(4)$	$-352(4)$	4286(5)	$48(2)$
C(13)	1229(5)	- $725(6)$	4284(6)	$71(3)$
C(14)	$916(6)$	$=1298(6)$	$3973(7)$	76(3)
C(15)	$372(6)$	- $1481(5)$	3660(6)	68(3)
(16)	$117(5)$	- $=1116(4)$	363445)	$53(2)$
$\mathbf{S b}(2)$	5996(1)	165(1)	5349(1)	$30(1)$
(2)	7004(1)	417(1)	5005 (1)	6061)
O(2)	5000	0	5000	$39(2)$
C(21)	5560(3)	331(3)	6342(4)	36(2)
C(22)	5333(4)	727(4)	6392(4)	4462)
C(23)	5100(5)	789(6)	7000(6)	70¢3)
C(24)	5076(6)	445(7)	7550(6)	84(4)
C(25)	5323(7)	74(7)	7509(6)	89(4)
C(26)	5593(6)	22(5)	6904(5)	61(3)
C(31)	$5611(4)$	-712(3)	5031(4)	35(2)
C(32)	6009(4)	-788(4)	4608(5)	53(2)
C(33)	$58.30 \times 6)$	-1345(6)	4309(6)	77(3)
C(3)	5263(7)	-1834(5)	4470(6)	74(3)
C(35)	4809(5)	-1775(4)	$4897(6)$	61(3)
C(36)	5044(4)	-1208(4)	5179(4)	$40(2)$
C(41)	6253(3)	883(3)	4625(4)	34(2)
C(42)	6080(4)	747(4)	3949(5)	45(2)
C(43)	6313(4)	1201(5)	3459(5)	54(2)
C(44)	$6711(5)$	1799(5)	3655(6)	$71(3)$
C(45)	6878(6)	1925(5)	4321 (7)	$81(4)$
C(46)	6665(5)	1463(4)	4813(5)	$61(?$
1(3)	0	0	705(1)	$65(1)$

$\overline{U_{e q}}$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 3
Selected bond lengths ((\mathbb{A}) and angles (deg) for 1

Sb(1)-O(1)	1.9209(11)
$\mathrm{Sb}(1)-\mathrm{C}(11)$	2.098(7)
$\mathrm{Sb}(1)-\mathrm{I}(1)$	3.035(2)
C. 1)-Sb(1)-C(11)	92.6(2)
$\mathrm{C}(1 \mathrm{I}) \mathrm{Sb}(1)-\mathrm{C}(11)^{\text {a }}$	119.80(3)
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{I}(1)$	87.4(2)
$\mathrm{Sb}(2)-\mathrm{O}(2)$	$1.9425(7)$
Sb(2)-C(31)	2.097(7)
$\mathrm{Sb}(2)-\mathrm{C}(21)$	$2.108(8)$
$\mathrm{Sb}(2)-\mathrm{C}(41)$	2.109(8)
$\mathrm{Sb}(2)-1(2)$	2.9636(10)
$\mathrm{O}(2)-\mathrm{Sb}(2)-\mathrm{C}(31)$	90.5(2)
$\mathrm{O}(2)-\mathrm{Sb}(2)-\mathrm{C}(21)$	$90.4(2)$
$\mathrm{C}(31)-\mathrm{Sb}(2)-\mathrm{C}(21)$	122.3 (3)
$\mathrm{O}(2)-\mathrm{Sb}(2)-\mathrm{C}(41)$	90.6(2)
$\mathrm{C}(31)-\mathrm{Sb}(2)-\mathrm{C}(41)$	116.0(3)
$\mathrm{C}(21)-\mathrm{Sb}(2)-\mathrm{C}(41)$	121.6(3)
$\mathrm{O}(2)-\mathrm{Sb}(2)-\mathrm{l}(2)$	179.04(3)
$\mathrm{C}(31)-\mathrm{Sb}(2)-1(2)$	89.9(2)
$\mathrm{C}(21)-\mathrm{Sb}(2)-1(2)$	88.6(2)
C(41)-Sb(2)-1(2)	$90.0(2)$
I(3)-1(3) ${ }^{\text {b }}$	2.732(3)

Symmetry transformations used to generate equivalent atoms: ${ }^{\text {a }}-\lambda$
$+y_{1}-x_{1} z^{b}-x_{1}-y_{1}-z$

0

Fig. 2. The structure of the chain $\left\{\cdots 1-1 \cdots\left|\mathrm{Ph}_{3} \mathrm{SbOSbP}\right|\right.$ I $\left.\cdots 1-1 \cdots \mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}\right)_{x}$.
$1.9425(7) \AA$). It seems likely that this difference is due to packing effects. As shown in Fig. 2, the $\mathrm{IPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ molecules on the three-fold axis are packed altermately with I_{2} molecules to form a one-dimensional (1-D) chain. The bond length in the I_{2} molecule is $2.732(2) \AA$, which is towards the low end of the range of values found in many other structures containing the diiodine molecule. A search of the Cambridge Crystallographic database showed more than 60 occurrences of this molecule with a mean distance of $2.80 \AA$ from values between $2.68-3.01 \AA$. This value is variable partly because it is significantly affected by packing effects. In the 1-D chain the distance between the iodine of the $\left[\mathrm{Ph}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}\right.$ molecule and the diodine molecule is only 3.370 (1) \AA so some weak interaction is probably present.

The dimensions of those $\mathrm{PPh}_{3} \mathrm{SbOSbPh}_{3} \mathrm{I}$ molecules which are not linked to I_{2} can be compared with those of the linear form of $\left(\mathrm{Ph}_{3} \mathbf{S b I}\right)_{2} \mathrm{O}$. 1a, reported earlier

Table 4
IR and Raman bands (below $1200 \mathrm{~cm}^{-1}$) of $4\left(\mathrm{Ph}_{3} \mathrm{Sbl}_{2} \mathrm{O}\right] \cdot \mathrm{I}_{2}(1)$ and $\left(\mathrm{Ph}_{3} \mathrm{Sbl}\right)_{2} \mathrm{O}$ (1a)

1		19		Assignment ${ }^{\text {a }}$
IR	Raman	IR	Raman	
	45 s		43 s	lattice/
			60 s	bending
	968		70 vs	modes
86 vw	91 vs		89 vs	$p_{2}(\mathbf{S b}-1)$
111 m	108 w,sh	1143		${ }_{148}(\mathbf{S b}-1)$
136 \%				*
		156 m	160 vw	\times
	174 vs			$1(1=1)$
183 w		190 w	187 w	u
			195 w	1
206 vw	208 w	206 m		0
	215 w		217 wm	1
225 m	225 w	2248	226 wm	1
260 w	260 w	258 m	262 w	1
295 ms		295 s	293 w	1
	345 vw			w
365 w				w
		390 w	393 vw	w
449 ms		450 s		y
455 w.sh		$457 \mathrm{~s} . \mathrm{sh}$	460 vw	y
615 w	613 vw	615 w	615 vw	s
	655 m		657 m	r
689 ms		688 s	691 w	v
725 w,sh		727 s		f
738 m	735 vw	736 m	733 w	
772 s		780 s		$\mathrm{Has}_{3}(\mathrm{Sb}=\mathrm{O}-\mathrm{Sb})$
803 m				,
		842 w	847 vw	g
915 vw	911 vw	915 vw	913 vw	i
970 vw	970 vw	970 w	970 vw	h
996 m	999 s	996 m	1000 s	p
1018 wm	1020 m	1020 wm	1021 m	b
1060 wm		1063 wm	1068 w	q

[^1]

Fig. 3. Raman spectra of the crystalline solids: (a) $4\left(\mathrm{Ph}_{1} \mathrm{Sbl}\right)_{2} \mathrm{O} \cdot I_{2}$ (1): (b) $(\mathrm{Ph}, \mathrm{Sb})_{2} \mathrm{O}(\mathrm{Ia})$.
[4]. Taking for ta the average measurements of its two crystallographically independent molecules (which have very similar dimensions) gives $\mathrm{Sb}-\mathbf{0} 1.9424(6), \mathrm{Sb}-\mathrm{I}$ 2.9610(10), Sb-C(av) 2.105(5) $\AA, ~ O-S b-C(a v)$ $90.6(1)^{\circ}, \mathrm{O}-\mathrm{Sb}-\mathrm{I} 180^{\circ}$. The corresponding figures for the present structure are almost identical, namely $\mathrm{Sb}-\mathrm{O}$ 1.9425(7), Sb-I 2.9636(10), Sb-C(av) $2.105(8) \AA, 0-$ $\mathrm{Sb}-\mathrm{C}(\mathrm{av}) 90.5(2)^{\circ}, \mathrm{O}-\mathrm{Sb}-\mathrm{I} 179.04(3)^{\circ}$. We have also compared the twist angles of the phenyl groups in the different versions of $\left(\mathrm{Ph}_{3} \mathrm{SbI}_{2} \mathrm{O}\right.$. In the crystal of 1, the phenyl rings about $\mathrm{Sb}(1)$ make angles of 31.5° with the SbC_{3} equatorial plane. For the other molecules the angles around $\operatorname{Sb}(2)$ are $38.4,40.1$ and 36.2°, respectively. For the molecules of crystal 1a, the corresponding angles are 38.5, 41.7 and 37.1 ${ }^{\circ}$.

3.2. Vibrational spectra

The IR and Raman spectra of 1 and la are compared in Table 4, while in Fig. 3 the Raman spectra are compared. The intense Raman scattering exhibited by 1 at $174 \mathrm{~cm}^{-1}$ (see Fig. 3(a)) almost certainly arises from
$\nu(\mathrm{I}-\mathrm{I})$ of the I_{2} portion of the adduct. This position represents a $40 \mathrm{~cm}^{-1}$ shift to low frequency compared with the fundamental for the I_{2} molecule itself: for the isotope ${ }^{127} \mathrm{I}_{2} \quad \omega_{e}=214.6$ and $\omega_{e} x_{e}=0.61 \mathrm{~cm}^{-1}$ [13]. The intense Raman band at $91 \mathrm{~cm}^{-1}$ may be assigned to $\nu_{\text {sym }}(\mathrm{Sb-l})$ of the $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ units of $\mathbf{1}$ and is almost unchanged in position from the corresponding vibration of la whose spectrum is shown in Fig. 3(b). There is no obvious feature which may be attributed to $\nu_{\mathrm{sym}}(\mathrm{Sb}-\mathrm{I})$ of the adducted $\left(\mathrm{Ph}_{3} \mathrm{SbI}_{2} \mathrm{O}\right.$ units of 1 . This vibration may give rise to the indistinct shoulder on the flank of the $91 \mathrm{~cm}^{-1}$ band. All of the Raman scattering above $200 \mathrm{~cm}^{-1}$ may be attributed to vibrations of the $\mathrm{Ph}_{3} \mathrm{Sb}$ moiety of either adducted or free $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ units and may be assigned with more-or-less certainty as in Table 4, according to the scheme of Whiffen [14].

Most of the IR absorptions of 1 find counterparts in the spectrum of la with modest wavenumber shifts. The IR band at $111 \mathrm{~cm}^{-1}$ is likely to belong to $\nu_{\mathrm{as}}(\mathrm{Sb}-\mathrm{I})$. Strong bands of 1a at 680 and $727 \mathrm{~cm}^{-1}$, assigned to ν and f modes [14-16] of the $\mathrm{Ph}_{3} \mathrm{Sb}$ moiety, respectively, are replaced in 1 by bands at 689 and $738 \mathrm{~cm}^{-1}$, the latter feature showing a weak shoulder at $725 \mathrm{~cm}^{-1}$. The asymmetric ($\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$) vibration gives rise to a single, strong feature at $772 \mathrm{~cm}^{-1}$ in the spectrum of 1 , close to the corresponding feature at $780 \mathrm{~cm}^{-1}$ in the spectrum of 1a. An extra IR band at $803 \mathrm{~cm}^{-1}$ of medium intensity in the spectrum of 1 may arise from the $\nu_{\mathrm{as}}(\mathrm{Sb}-\mathrm{O}-\mathrm{Sb})$ mode of the adducted $\left(\mathrm{Ph}_{3} \mathrm{SbI}\right)_{2} \mathrm{O}$ molecule, wherein the $\mathrm{Sb}-\mathrm{O}$ bond is slightly shorter compared with the remaining molecules.

It is instructive to comment briefly on the intermolecular bonding in 1. Tine main point concerns the 1-I bond length of the diiodine molecule and the vibrational frequency of this unit. The magnitude of the shift to low frequency of $\nu(I-I)$ and the degree of lengthening of the $1-1$ bond reflect the level of donation of electronic charge into the σ * LUMO of the I_{2} unit and are usually taken as a measure of the strength of adduct formation [17]. The data quoted here suggest that there is a significant donation of charge from the $\left(\mathrm{Ph}_{3} \mathrm{Sbl}_{2} \mathrm{O}\right.$ unit to the I_{2} in 1 but that the adduct is not very strong. The position of the visibie absorption of I_{2} adducts may
also be taken as a measure of the strength of donation by the Lewis base (see for example Ref. [17]). The colour of 1 (a greenish-brown) is consistent with these observations.

Acknowledgements

We thank EPSRC for the award of a studentship to GS. MJA and MJT are grateful to their respective universities for grants of study leave during which this research was accomplished.

References

[1] G.O. Doak, G.G. Long and L.D. Freeman, J. Organomet. Chem., 4 (1965) 82.
[2] EPSRC Chemical Databank System, ICSD component, Daresbury Laboratory, Daresbury, Warrington, UK.
[3] C. Glidewell, J. Organomet. Chem., 356 (1988) 151.
[4] M.J. Taylor, L..J. Baker, C.E.F. Rickard and P.W.J. Surman, J. Organomet. Chem., 498 (1995) C14.
[5] N. Bricklebank, S.M. Godfrey, H.P. Lane, C.A. McAuliffe and R.G. Pritchard, J. Chem. Soc. Dalton Trans., (1994) 1759.
[6] L.J. Baker, C.E.F. Rickard and M.J. Taylor, J. Chem. Soc. Dalton Trans., (1995) 2895.
[7] J.F.C. Boodts and W.A. Bueno, J. Chem. Soc. Faraday Trans. I. 76 (1980) 1689.
[8] J. Bordner, G.O. Doak and T.S. Everett, J. Am. Chem. Sic., 108 (1986) 4206.
[9] W. Kabsch, J. Appl. Crystallogr., 21 (1988) 916.
[10] G.M. Sheldrick, shelxis6, Acra Cryssallogr. Sect, A: 46 (1990) 467.
[11] N. Walker and D. Stuart. Acta Crystallogr. Sect. A: 39 (1983) 158.
[12] G.M. Sheldrick, sheaxi.93, Program for crystal structufe refinement, University of Gotingen.
[13] G. Herzberg. Molecular Spectra and Molecular Struchure. Vol. 1. Spectra of Diatomic Molecules, Van Nostrand, Princeton, NJ. 1950.
[14] D.H. Whiffen, J. Chem. Soe, (1956) 1350.
[15] M.J. Taylor, in F.R. Hartey and S. Patai (eds.), The Chemistry of the Metal-Curison Bomd, Wiley, London, 1982, Chapter 20.
[16] B.A. Nevett and A. Perry, Spectrochim. Actu Part A: 33 (1977) 755.
[17] A.G. Massey, Main Group Chemistry, Ellis Horwoox, Chichester, 1990, Chapter 10.

[^0]: - Corresponding authors.

[^1]: Phenyl ring modes are assigned according to Whiffen's notation (see text). The bands of types q, $, t, u, x$ and y are sensitive to the nature of X in a molecule of the kind FhX .

